Computer Graphics III Spherical integrals, Light & Radiometry – Exercises

Jaroslav Křivánek, MFF UK

Jaroslav.Krivanek@mff.cuni.cz

Reminders & org

Renderings due next week

- Upload to google drive, show on the big screen, 5 minutes per team (how many teams do we have)
- Papers for presentations in the lab − 7.11., 21.11,
 - ACM TOG special issue on production rendering <u>https://dl.acm.org/citation.cfm?id=3243123&picked=prox</u>
- Reminder choose papers for the exam
 - http://kesen.realtimerendering.com/
- Log your choices here
 - https://docs.google.com/document/d/128e4DghoIvH64DI6Ohu 2eRGthom5i8WlKpDwNyJzpVM/edit?usp=sharing
- Decide assignments track vs. individual project track by Wed, Oct 31st 2018.

PEN & PAPER EXERCISES

Surface area of a (subset of a) sphere

- Calculate the surface area of a unit sphere.
- Calculate the surface area of a spherical cap delimited by the angle θ_0 measured from the north pole.
- Calculate the surface area of a spherical wedge with angle ϕ_0 .

Solid angle

- What is the solid angle under which we observe an (infinite) plane from a point outside of the plane?
- Calculate the solid angle under which we observe a sphere with radius *R*, the center of which is at the distance *D* from the observer.

Isotropic point light

• **Q:** What is the emitted power (flux) of an isotropic point light source with intensity that is a constant *I* in all directions?

Isotropic point light

• **A:** Total flux:

$$\Phi = \int_{\Omega} I(\omega) d\omega = \begin{vmatrix} substitute : \\ d\omega = \sin\theta d\theta d\varphi \end{vmatrix}$$

$$= I \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \sin\theta d\theta d\varphi$$

$$= I 2\pi [-\cos\theta]_{0}^{\pi}$$

$$= 4\pi I$$

$$I = \frac{\Phi}{4\pi}$$

Cosine spot light

What is the power (flux) of a point source with radiant intensity given by:

$$I(\omega) = I_0 \max\{0, \omega \cdot \vec{d}\}^s$$

Spotlight with linear angular fall-off

What is the power (flux) of a point light source with radiant intensity given by:

$$I(\theta, \phi) = \begin{cases} I_0 & \theta \le \alpha \\ I_0 \frac{\beta - \theta}{\beta - \alpha} & \alpha < \theta < \beta \\ 0 & \theta \ge \beta \end{cases}$$

Constant part

$$\Phi_1 = \int_0^{2\pi} \int_0^{\alpha} I_0 \sin\theta d\theta d\phi = I_0 2\pi (1 - \cos\alpha).$$

Linear part

$$\Phi_2 = \int_0^{2\pi} \int_{\alpha}^{\beta} I_0 \frac{\beta - \theta}{\beta - \alpha} \sin\theta d\theta d\phi = I_0 \frac{2\pi}{\beta - \alpha} \int_{\alpha}^{\beta} (\beta - \theta) \sin\theta d\theta \tag{1}$$

The last integral is the sum of the following two integrals:

$$\int_{\alpha}^{\beta} \beta \sin \theta d\theta = \beta \cos \alpha - \beta \cos \beta \tag{2}$$

$$-\int_{\alpha}^{\beta} \theta \sin \theta d\theta = \left| \sin \theta - \theta \cos \theta \right|_{\beta}^{\alpha} = \sin \alpha - \alpha \cos \alpha - \sin \beta + \beta \cos \beta \tag{3}$$

Plugging (2) and (3) into (1) and rearranging, we get

$$\Phi_2 = I_0 \frac{2\pi}{\beta - \alpha} \left[(\beta - \alpha) \cos \alpha + \sin \alpha - \sin \beta \right] = I_0 2\pi \left[\cos \alpha - \frac{\sin \beta - \sin \alpha}{\beta - \alpha} \right]. \tag{4}$$

CG III (NPGR010) - J. Křivánek

Total flux

$$\Phi = \Phi_1 + \Phi_2 = I_0 2\pi \left[1 - \frac{\sin \beta - \sin \alpha}{\beta - \alpha} \right]$$
 (5)

Irradiance due to a Lambertian light source

• What is the irradiance $E(\mathbf{x})$ at point \mathbf{x} due to a uniform Lambertian area source observed from point \mathbf{x} under the solid angle Ω ?

Uniform Area Source

$$E(x) = \int_{H^2} L \cos \theta d\omega$$
$$= L \int_{\Omega} \cos \theta d\omega$$
$$= L \tilde{\Omega}$$

How dark are outdoor shadows?

- ◆ luminance arriving on a surface from a full (overhead) sun is 300,000 × luminance arriving from the blue sky, but the sun occupies only a small fraction of the sky
- → illuminance on a sunny day = 80% from the sun + 20% from blue sky, so shadows are 1/5 as bright as lit areas (2.3 f/stops)

Based in these hints, calculate the solid angle under which we observe the Sun. (We assume the Sun is at the zenith.)

RAW, linearly boosted © 2009 Marc Levoy

Irradiance due to a point source

• What is the irradiance at point \mathbf{x} on a plane due to a point source with intensity $I(\omega)$ placed at the height h above the plane.

dω

The segment connecting point x to the light position p makes the angle θ with the normal of the plane.

Irradiance due to a point source

Irradiance of a point on a plane lit by a point source:

$$E(\mathbf{x}) = \frac{d\Phi(\mathbf{x})}{dA}$$

$$= \frac{I(\mathbf{p} \to \mathbf{x})d\omega}{dA}$$

$$= I(\mathbf{p} \to \mathbf{x}) \frac{\cos \theta}{\|\mathbf{p} - \mathbf{x}\|^2}$$

$$= I(\mathbf{p} \to \mathbf{x}) \frac{\cos^3 \theta}{h^2}$$

Area light sources

- Emission of an area light source is fully described by the emitted radiance $L_e(\mathbf{x},\omega)$ for all positions on the source \mathbf{x} and all directions ω .
- The total emitted power (flux) is given by an integral of $L_e(\mathbf{x},\omega)$ over the surface of the light source and all directions.

$$\Phi = \int_{A H(\mathbf{x})} L_e(\mathbf{x}, \omega) \cos \theta \, d\omega \, dA$$

Diffuse (Lambertian) light source

• What is the relationship between the emitted radiant exitance (radiosity) $B_e(\mathbf{x})$ and emitted radiance $L_e(\mathbf{x}, \omega)$ for a Lambertian area light source?

Lambertian source = emitted radiance does not depend on the direction ω

$$L_e(\mathbf{x}, \omega) = L_e(\mathbf{x}).$$

Diffuse (Lambertian) light source

- $L_e(\mathbf{x}, \omega)$ is constant in ω
- Radiosity: $B_e(\mathbf{x}) = \pi L_e(\mathbf{x})$

$$B_{e}(\mathbf{x}) = \int_{H(\mathbf{x})} L_{e}(\mathbf{x}, \omega) \cos \theta \, d\omega$$
$$= L_{e}(\mathbf{x}) \int_{H(\mathbf{x})} \cos \theta \, d\omega$$
$$= \pi L_{e}(\mathbf{x})$$

Uniform Lambertian light source

- What is the total emitted power (flux) Φ of a **uniform** Lambertian area light source which emits radiance L_e
 - □ Uniform source radiance does not depend on the position, $L_e(\mathbf{x}, \omega) = L_e = \text{const.}$

Uniform Lambertian light source

• $L_{\rho}(\mathbf{x}, \omega)$ is constant in \mathbf{x} and $\boldsymbol{\omega}$

$$\Phi_e = \mathbf{A} \mathbf{B}_e = \pi \mathbf{A} \mathbf{L}_e$$